Mathematics Calculation Policy - The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. - Age stage expectations: - The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014 and the method(s) shown for each year group should be modelled to the vast majority of pupils. However, it is vital that pupils are taught according to the pathway that they are currently working at and are showing to have 'mastered' a pathway before moving on to the next one. Of course, pupils who are showing to be secure in a skill can be challenged to the next pathway as necessary. All methods to be consolidated by end of year 5. - Choosing a calculation method: strategy? Before pupils opt for a written method they should first gonsider these catepalo it in Could I use my head some some some help me? formal written method to work it out? #### **Concrete resources:** 100 square Number lines Bead strings Straws Base ten Place value cards Place value dice Place value counters Numicon | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ٩ | 10 | |----|----|----|----|----|----|----|----|----|-----| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | # Addition: Reception #### Early learning goals: - ✓ Count reliably with numbers from 1 to 20, place them in order. - ✓ Say which number is one more than a given number. - ✓ Using quantities and objects, they add two single-digit numbers and count on to find the answer. Recognise numbers up to 20 and understand the meaning of each number by recognising and knowing their clusters Count on in ones and say which number is one more than a given number using a number line or number track to 20. Begin to relate addition to combining two groups of objects using practical resources, role play, stories and songs. Know that counting on is a strategy for addition. Use numbered number lines to 20. #### Year 1 statutory requirements: - ✓ Count to and across 100, forwards beginning with 0 or 1, or from any given number. - ✓ Given a number, identify one more. - ✓ Read, write and interpret mathematical statements involving addition (+), and equals (=) signs. - ✓ Represent and use number bonds and related subtraction facts within 20 - ✓ Add one-digit and two-digit numbers to 20, including zero. - ✓ Solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems. Identify and represent numbers using objects and pictorial representations (multiple representations) Memorise and reason with number bonds to 10 and 20 in several forms. Count on in ones to and across 100 and find one more than a given number. 10 Use concrete resources and a number line to support the addition of numbers. Know and use strategy of finding the larger number, and counting on in ones from this number. 1 digit + 1 digit 7 + 5 = 12 **18 + 5 = 23** Begin to use the + and = signs to write calculations in a number sentence. 2 digit + 1 digit Solve one-step problems using concrete objects and pictorial representations. #### Year 2 statutory requirements: - ✓ Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts to 100. - ✓ Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. - ✓ Add numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - · adding three one-digit numbers. - ✓ Solve problems with addition including those involving numbers, quantities and measures. Memorise and reason with number facts to 20 in several forms. Partition two 2-digit numbers using a variety of models and images. Add 2 digit number and ones Add 2 digit number and tens Use partitioning to add two 2-digit numbers using concrete resources and/or a numbered number line and then progressing to an empty number line. Jump of tens first then jumps of units This is your answer As children gain confidence with adding on tens and ones, they should be taught to combine the jumps on an empty number line. =77 # Addition: Year 3 & 4 #### Year 3 statutory requirements: - Find 10 or 100 more than a given number. - Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). - Add numbers with up to three digits, using formal written methods of columnar addition. #### Year 4 statutory requirements: - Find 1000 more than a given number. - Add numbers with up to 4 digits using the formal written methods of columnar addition where appropriate. - Solve addition two-step problems in contexts, deciding which operations and methods to use and why, By the end of year 4, pupils should be adding numbers up to 4 digits using compact column addition method. Any 'carried' numbers to be crossed out when added. $$\begin{array}{r} 5271 \\ +2357 \\ \hline 7628 \\ \hline \hline$$ # Addition: Year 5 & 6 #### Year 5 statutory requirements: - Add whole numbers with more than 4 digits using formal written methods of columnar addition. - Add numbers mentally, with increasingly large numbers. - Solve addition multi-step problems in contexts, deciding which operations and methods to use and why. - Solve problems involving numbers up to three decimal places #### Year 6 statutory requirements: • Pupils are expected to solve more complex addition and subtraction problems In year 5 and 6 pupils should be adding numbers using compact column addition method. Note: The carried ten, hundred, thousand is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at the bottom of the column in which it is to be added. When adding decimals, it is essential that the decimal point does not move and kept in line. Where necessary, a zero should be added as a *place holder*. $$12.5 + 23.7$$ $34.5 + 27.43$ # Subtraction #### **Concrete resources:** 100 square Number lines Bead strings Straws Base Ten Counting stick Place value dice Place value cards Place value counters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|------------|----|----|----|----|----|----|----|-----| | Ш | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | | 11 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 19 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 41 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | 61 | δk | 63 | 64 | 65 | 64 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | Ţŷ | 80 | | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | # Subtraction: Reception #### Early learning goals: - ✓ Say which number is one less than a given number. - ✓ Using quantities and objects, they subtract two single-digit numbers and count back to find the answer. Say which number is one less than a given number using a number line or number track to 20. Begin to count backwards in familiar contexts such as number rhymes or stories. 10 Green Bottles sitting on the wall ... 5 little ducks went swimming one day... Begin to relate subtraction to 'taking away' using concrete objects and role play. Three teddies take away two teddies leaves one teddy Count backwards along a number line to 'take away' Dan has 12 football stickers. He gives 4 to Ben. How many stickers does he have left? #### Year 1 statutory requirements: - ✓ Say which number is one less than a given number. - ✓ Represent and use number bonds and related subtraction facts within 20. - ✓ Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs. - ✓ Subtract one-digit and two-digit numbers to 20, including zero. - ✓ Solve one-step problems that involve subtraction using concrete objects and pictorial representations, and missing number problems. Understand subtraction as take away. Use practical resources, pictorial representations, role play, stories and rhymes. Use number bonds and related subtraction facts within 20. Count back in ones and find one less than a given number. **Counting on** should only be used when the language used is 'find the difference', 'difference between' and 'distance between'. The difference between II and I4 is 3. I4 - II = 3 | | + | = | 4 Use number line to support the subtraction of numbers. Know and use strategy of **counting back** to subtract one-digit and two-digit numbers to 20. Solve one-step problems using concrete objects and pictorial representations. 15 - 7 = 8 Begin to use the - and = signs to write calculations in a number sentence. Use partitioning to subtract two 2-digit numbers using concrete resources and/or a numbered number line and then progressing to an empty number line. #### Year 2 statutory requirements: - · Recall and use subtraction facts to 20 fluently, and derive and use related facts to 100. - Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. - Subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers. facts to 20 in several forms. 8 + 12 = 20 12 + 8 = 20 20 - 12 = 8 20 - 8 = 12 Memorise and reason with number Partition two 2-digit numbers using a variety of models and images. Subtract 2 digit and ones Subtract 2 digit and tens OR Introduce column method with place value resources to support the conceptual understanding of subtracting numbers with up to two digits with no exchanging. # Subtraction: Year 3 & 4 Build on learning from Year 2 to show compact column subtraction method with exchanging. #### Year 3 statutory requirement: - Find 10 or 100 less than a given number. - Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). - Subtract numbers with up to three digits, using formal written methods of column subtraction. - Subtract numbers mentally, including: - · A three-digit number and ones - · A three-digit number and tens - A three-digit number and hundreds. #### Year 4 statutory requirements: - Find 1000 less than a given number. - Subtract numbers with up to four digits, using formal written methods of columnar subtraction where appropriate. - Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why. **Note:** The exchanged ten or hundred is just as important as any other number, therefore, it should be written as clear and as large as any other number, and placed at the **top** of the column which has been adjusted. By the end of year 4, pupils should be subtracting numbers up to 4 digits using compact column subtraction method. Children will be introduced to decimals and place holders # Subtraction: Year 5 & 6 #### Year 5 statutory requirements: - Subtract whole numbers with more than 4 digits using formal written methods of columnar subtraction. - Subtract numbers mentally, with increasingly large numbers. - Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. - Solve problems involving numbers up to three decimal places. Year 6 statutory requirements: pupils are expected to solve more complex addition and subtraction problems In year 5 and 6 pupils should be subtracting numbers using compact column subtraction method. Note: The exchanged ten or hundred is just as important as any other number. Therefore, it should be written as clear and as large as any other number, and placed at the top of the column which has been adjusted. When subtracting decimals, it is essential that the decimal point does not move and kept in line. Where necessary, a zero should be added as a *place holder*. # Multiplication #### **Concrete resources** Place value counters Base Ten Place value charts Arrays Multiplication squares 100 square Number lines Blank number lines Counting stick | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|----|----|------------|----|----|------------|------------|------------|-----| | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 3 6 | 40 | | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 5 6 | 63 | 70 | | 8 | 16 | 24 | 32 | 40 | 48 | 5 6 | 64 | 72 | 80 | | 9 | 18 | 27 | 3 6 | 45 | 54 | 63 | 72 | 81 | 90 | | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | multiplication product once, twice, three times double groups of repeated addition lots of array, row, column multiply times multiple # Multiplication: Reception Early learning goal statutory requirement: √They solve problems, including doubling, halving and sharing. Use pictorial representations and concrete resources to double numbers to 10. Use concrete sources, role play, stories and songs to begin counting in twos, fives and tens. # Multiplication: Year 1 Year 1statutory requirement: ✓ Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Count in twos, fives and tens using practical resources, role play, stories and songs. Understand multiplication as repeated addition use concrete objects to support understanding. 5 + 5 + 5 or 3×5 representations Use pictorial Use arrays Model and bridge link from repeated addition to solving multiplication problems using a number line. 9 groups of $$2 = 18$$ 9 jumps of $$2 = 18$$ $$9 \times 2 = 18$$ ### Multiplication: Year 2 #### Year 2 statutory requirement: - ✓ Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers. - \checkmark Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division ($\dot{\div}$) and equals (=) signs. - ✓ Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. - ✓ Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. Further develop understanding multiplication as repeated addition. Use known facts to solve to solve problems, Use pictorial representations OR 3 groups of 5 Use arrays Recall multiplication and division facts for 2, 5, 10 | 10 | + 2 | |----|-----| | X | 4 | | | 8 | | | 40 | 48 # Multiplication: Year 3 & 4 Develop recall of multiplication facts (alongside inverse of the corresponding division facts). | X | 3 | 4 | 8 | X | 4 | ? | ? | |---|---|---|---|---|----|----|----| | 5 | | | | ? | 8 | 6 | 10 | | 6 | | | | 6 | 24 | 18 | 30 | | 4 | | | | ? | 32 | 24 | 40 | $$12 \times 4 = 48$$ | Χ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |----|----|----|----|----|----|----|----|----|-----|-----|-----|-----| | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | | 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | | 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | | 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | | 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | | 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 | | 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | | 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 | | 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | | 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 | | 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | Develop recall of multiplication facts (alongside the inverse of the corresponding division facts). Year 3 statutory requirements: - ✓ Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. - ✓ Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. - ✓ Solve problems, including missing number problems, involving multiplication including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. Use concrete resources to develop conceptual understanding of the compact method introduced in Year 4 The yellow ribbon is 4 times as long as the red ribbon. What is it's length? #### Year 4 statutory requirement: - ✓ Recall multiplication and division facts for multiplication tables up to 12 × 12 - ✓ Use place value, known and derived facts to multiply and divide mentally, including: multiply two-digit and three-digit numbers by a one-digit number using formal written layout. - ✓ Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. x3 Use knowledge of times tables to solve scaling problems. Susie wants to bake 12 cupcakes people. The ingredients given are for four cupcakes. How much flour will she need? Cupcakes Flour 4 150g 12 900g 180g sugar 2 eggs 150g flour # Multiplication: Year 5 & 6 Year 5 statutory requirements: ✓ Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. ✓ Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 Build on learning from Year 4 and use concrete resources if needed to multiply numbers up to 4 digits by one digit using compact short multiplication. multiplication. 643 × 8 3 2 643 × 8 5144 Year 6 statutory requirements: ✓ Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. ✓ Multiply one-digit numbers with up to two decimal places by whole numbers. To multiply by 10, 100, 1000 children should use place value charts to show that the digit moves a column (s) to the left .The value of the digit is increasing by 10, 100 or 1000 times. Use Napier's bones to multiply decimal number by whole number or decimal numbers by decimal numbers . ### Division #### **Concrete resources:** Arrays Multiplication squares 100 square Number lines Blank number lines Counting stick Place value apparatus # Division: Reception Early learning goal statutory requirement: ✓ They solve problems, including halving and sharing. Use pictorial representations and concrete resources to halve numbers to 10. Begin to share quantities using practical resources, role play, stories and songs. #### Role play example: It is the end of the party and the final two teddies are waiting for their party bags. Provide empty party bags and a small collection of items such as gifts, balloons and slices of cake. Ask the children to share the objects between the two bags. # Division: Year 1 #### Year 1 statutory requirement: • solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Understand division as **sharing** using concrete resources. $12 \div 3$ Pictorial representation of sharing 12 gold coins $12 \div 4$ 12 into groups of 2 12 ÷ 2 = 6 Begin to understand division as **grouping** using concrete resources. # Division: Year 2 Year 2 statutory requirement: - ✓ Recall and use division facts for 2, 5 and 10 multiplication tables. - \checkmark Calculate mathematical statements for multiplication and division within the multiplication tables and write then using the multiplication (x), division () and equals (=) signs. - ✓ Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. - \checkmark Find 1/3; 1/4; 2/4; $\frac{3}{4}$ of a length, shape, set of objects or quantity Further develop understanding of difference between **sharing and grouping** using concrete resources. 18 smiley faces shared between 3 classes. 18 into groups of 3 $18 \div 3 = 6$ By end of Year 2, children will be introduced to remainders as a 'left over.' Model division as grouping on a number line (ITP 'Grouping') Children progress from numbered number lines to divide using grouping and counting in groups. 18 into groups of 3 = 6 groups 18 into jumps of 3 = 6 jumps $18 \div 3 = 6$ $$18 \div 3 = 6$$ Remember to develop connections between fractions and division and rephrase this calculation as 1/3 of 18 is the same as 1/3 = 6. # Division: Year 3 & 4 #### Year 3 statutory requirement: - ✓ Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables - ✓ Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods - ✓ Solve problems, including missing number problems, involving division including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. Year 4 statutory requirement: Note - there isn't a statutory objective for division. However, Y4 statutory multiplication objectives are to (1) recall multiplication and division facts for multiplication tables up to 12×12 and (2) multiply two-digit and three-digit numbers by a one-digit number using formal written layout so we will build on the connections between multiplication and division. Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor). Limit numbers to NO remainders in the final answer, but with remainders occurring within the calculation. Extend to 3-digit number first where the divisor can go into the first number and then progress to when the divisor cannot go into the first number. **Remember** to develop connections between fractions and division and rephrase these calculations as 1/3 of 96; ¼ of 72, ¼ of 872 and 1/5 of 185. Note: Year 3 fraction objective - *Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators; Year 4 fraction objective: solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.* By end of Year 4, extend to 3-digit number first where the divisor can go into the first number, then progress to when the divisor cannot go into the first number and finally a remainder, fraction and decimal. $$19 \div 5 = 3 R 4 = 3 \frac{4}{5} = 3.8$$ # Division: Year 5 Year 5 statutory requirement: ✓ divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. $$218 \div 8 =$$ Further secure pupils' understanding of compact short division. Extend to expressing results in different ways according to the context, including with remainders as fractions, as decimals or by rounding. For example: - Whole number remainder = 27 r 2 - Fraction remainder = $27\frac{2}{8}$ = $27\frac{1}{4}$ - Decimal remainder = $27\frac{1}{4} = 27\frac{25}{100} = 27.25$ ### Division: Year 6 Year 6 statutory requirement: ✓ divide numbers up to 4 digits by a two-digit whole number using the formal written method of division, Continue to use compact short division to divide numbers up to 4 digits by a 1-digit whole number. $$50 \div 4 = 59 \div 4 = 14.75$$ 14.75 $4 = 59.3000$ Use division to divide numbers up to 4 digits by a 2-digit whole number.